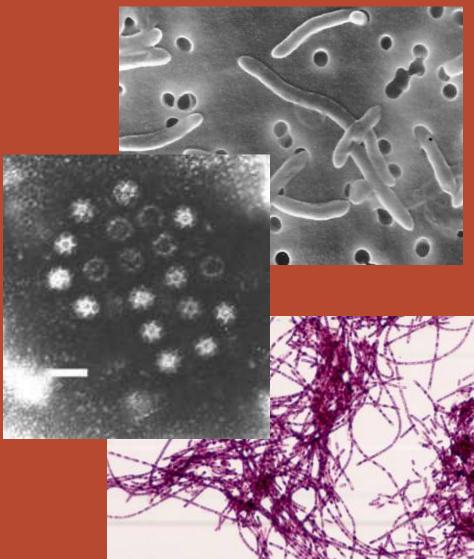
Microbiology of Spices

Jim Dickson Department of Animal Science Interdepartmental Program in Microbiology

Part 1 Review of Basic Microbiology



Outline – Part 1

- Review type of microorganisms
- Overview of the microbiology of spices
- Foodborne Illnesses

Microorganisms

- Most microorganisms are harmless
- Many are helpful
- Very few cause disease

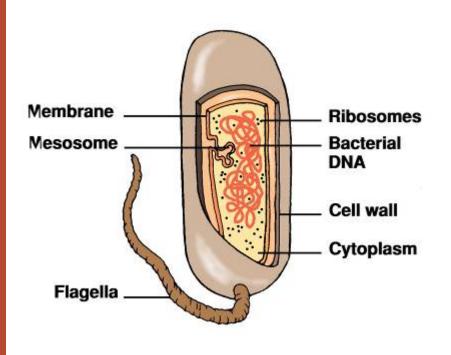
Iowa State University

Outline – Part 2

- Basic outline of microbial testing methods
- Spice production and processes.
- Interventions
- Verification and Validation

Microorganisms Important in Foods

Bacteria


• Fungi (yeasts and molds)

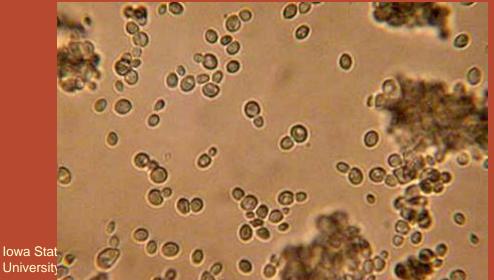
• Viruses

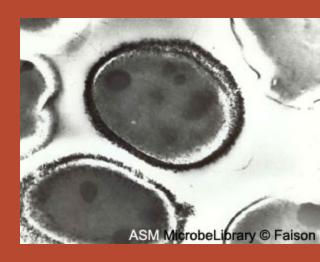
Bacteria

 Largest group of microorganisms

 Most important group from a food microbiology perspective

Iowa State University




Yeasts

- Single celled
- usually round or oval

- require simple diets
- can grow with or without oxygen

Yeasts

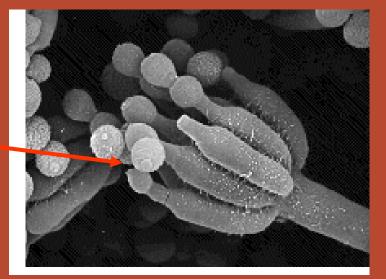
Ferments sugar to: Alcohol

carbon dioxide

- Grow with or without oxygen
- Grow slower than most bacteria
- Grow in environments that most bacteria will not grow in

Molds

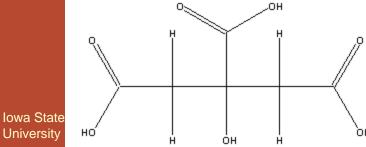
- Visible mold is actually a colony
- Made up of multiple types of cells
- requires oxygen for growth


Iowa State University

Molds

• Reproductive cells

• Vegetative cells

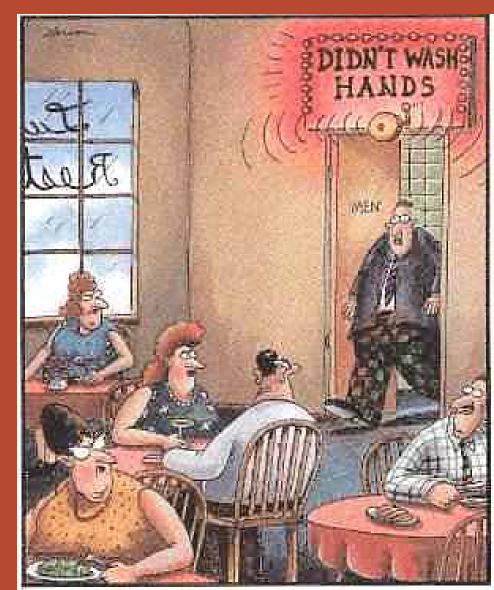


Molds

- Products include
 - mold ripened cheese
 - soy sauce
 - Enzymes
 - citric acid

Viruses - Physiology

- Obligate intracellular parasites
- no metabolic activity
- can infect bacteria (bacteriophage) plants, animals and humans
- in general, viruses are species speific



Viruses - Reproduction

- Virus attaches to host cell
- insertion of viral genetic material (either RNA or DNA) into host cell DNA
- host cell manufacturers new virus
- cell lysis, virus particles released

Enteric Viruses

Human viruses do not replicate in environment food, water, air or utensils are simply the vehicle for transmission very low infective dose

Factors Affecting Microbial Growth and Survival

Source of the Microorganism

 Environmental conditions to allow growth or survival

• Sufficient time for growth

Sources of Microorganisms in Spices

Environment

• Food Itself

Food Processing Equipment

Food Handlers

Environmental Sources?

Cow poop. Yes, I have definitely stepped in cow poop.

I hate nature.

http://www.blogcdn.com/www. greendaily.com/media/2008/0 3/soil-ammendment-550.jpg

> Iowa State University

http://en.wikipedia.org/wiki/Fil e:Hestem%C3%B8j.jpg

Sources of Bacteria in Spices

Iowa State University

Sources of Bacteria in Spices

• Equipment

Sources of Bacteria in Foods

Every employee is a "food handler"

Hand washing is fundamental to food safety

Iowa State University

Major Spice Producing Countries

Country	% of Total Production	Europe
India	71.1%	direrranian Sea Egypt Arabia India
Bangladesh	6.5%	A ANS
Turkey	6.3%	Somalia Indian Ocean Java
China	4.6%	
Pakistan	2.6%	
Ethiopia	1.4%	FAOSTATS, 2012
Everybody Else	7.4%	23

Unique Microbiology of Spices

- > Dry (low moisture, low a_w), Long shelf-life
- Global sourcing, supply chain
- Used in relatively small quantities
- Processing, re processing and packaging
- May be used singly or, as a part of mixture, condiments
- Bacteriostatic and antimicrobial properties
- Microbiologically stable

Microbiology of Spices

- Raw spices may harbor large numbers of organisms
 Total plate counts/spoilage organisms ~10⁶
 Aerobic and anaerobic spore formers mostly mesophilic
 Yeats and molds, some mycotoxigenic
- Potentially pathogenic organisms, especially Salmonella
- Indicators/spoilage orgs. coliforms, Enterobacteriaceae
- Bacillus cereus, Clostridium perfringens

Microbiological Quality of Imported Spices and Herbs

Microbial group/target	No. of Samples	%Samples Meeting target
Total <10 ⁶ /g	113	73
Spores <10 ⁶ /g	114	75
Yeast and molds < 10 ⁵ /g	113	97
TA Spores < 10 ³ /g	114	70
+ for E. coli, S. aureus, Salmonellae	114	0

Julseth, R. M., and R. H. Deibel. 1974. Micorbial profile of selected spices and herbs at import. J. Milk Food

Technol. 37: 414-419

Microbiological Quality of Processed Spices

Microbial group/target	No. of Samples	%Samples Meeting target
Total <10 ⁵ /g (10 ⁶ /g)	114(114)	70 (91)
Coliforms <10 ² /g	114	97
Yeast and molds < 10 ⁴ /g	113	96
C. perfringens <10 ² /g	114	89
+ for B. cereus	110	53

¹ Powers, E.M., R. Lawyer and Y. Masuoka. 1975. Microbiology of processed spices J. Milk Food Technol. 38: 683-687.

Microbiological Examination of Dried Spices and Herbs from Production and Retail Premises in the U.K.

A study to determine microbiological status of dried spices and herbs in the U.K.

96% of 2833 retail samples and 92% of 132 production batches were of satisfactory/acceptable quality.

Microbiological Examination of Dried Spices and Herbs from Production and Retail Premises in the U.K.

Salmonella spp. was detected in both dried spices & herbs sampled at retail and production.

A small proportion of herbs and spices contained high populations of:

- B. cereus (1%, ≥104 cfu/g)
- C. perfringens (0.4%, ≥103 cfu/g)
- *≻ E. coli* (2.1%,≥102 cfu/g).

90% of samples examined recorded as 'ready-to-use'

ACM/913 ADVISORY COMMITTEE ON THE MICROBIOLOGICAL₂SAFETY OF FOOD INFORMATION PAPER, June 2008

Microbial Profile of Raw Spices (count/ g of spice)

	APC	AMS	AnTS	Y&M
Black pepper	5.5x 10 ⁶ –	5.5x 10 ⁶ –	5.5x 10 ² –	1.0 x 10 ¹ -
	5.0 X 10 ⁸	5.0 X 10 ⁷	3.0 X 10 ⁵	1.5 x 10 ⁵
Oregano	5.5 x 10 ³ –	1.0 x 10 ³ –	1.0 x 10 ¹ –	1.0 x 10 ¹ -
	1.5 x 10 ⁵	7.5 x 10 ⁴	5.5 x 10 ³	5.0 x 10 ³
Paprika	3.0x10 ⁴ to		1.0x10 ¹ to	1.0x10 ¹ to
(domestic)	5.5x10 ⁶		5.5x10 ³	5.0x10 ²
	5.5x10 ⁶ to 3.0x10 ⁷			1.0x10 ¹ to 5.0x10 ²
Nutmeg	1.0x10 ³ to 3.0x10 ⁴			1.0x10 ¹ to 5.0x10 ²

Source: ASTA- Microbial Profile of Raw Spices

Microbial Profile of Raw Spices (count/ g of spice)

	APC	AMS	AnTS	Y&M
Black	5.5x 10 ⁶ –	5.5x 10 ⁶ –	5.5x 10 ² –	1.0 x 10¹-
pepper	5.0 X 10 ⁸	5.0 X 10 ⁷	3.0 X 10 ⁵	1.5 x 10⁵
Oregano	5.5 x 10 ³ –	1.0 x 10 ³ –	1.0 x 10 ¹ –	1.0 x 10 ¹ -
	1.5 x 10 ⁵	7.5 x 10 ⁴	5.5 x 10 ³	5.0 x 10 ³
Paprika	3.0x10⁴ -	5.5x10 ³ -	1.0x10 ¹ -	1.0x10 ¹ -
(domestic)	5.5x10 ⁶	5.5x10 ⁶	5.5x10 ³	5.0x10 ²
Paprika	5.5x10 ⁶ -	5.5x10 ⁶ -	1.0x10 ¹ to	1.0x10 ¹ -
(imported)	3.0x10 ⁷	3.0x10 ⁷	3.0x10 ⁴	5.0x10 ²
Nutmeg	1.0x10 ³ -	1.0x10 ³ -	1.0x10 ¹ to	1.0x10 ¹ -
	3.0x10 ⁴	5.5x10 ³	5.5x10 ³	5.0x10 ²
Mustard	1.0x10 ³ -	1.0x10 ³ -	1.0x10 ¹ to	0 - 9
seed	7.5x10 ⁵	3.0x10 ⁴	5.0x10 ²	
Ginger	5.5x10 ³ -	5.5x10 ³ -	1.0x10 ¹ to	1.0x10 ¹ -
	5.5x10 ⁶	5.5x10 ⁶	5.5x10 ³	3.0x10 ⁴

Source: ASTA- Microbial Profile of Raw Spices

Spice Recalls due to Salmonella

Year	Product	Pathogen
2001	Paprika	Salmonella ohio
2002	Oregano	Salmonella bispebjerg
2002	Sesame seeds	Slamonella senftenberg
2003	Basil leaves	Salmonella haifa
2003	Ground cumin	Salmonella onderstepoort
2004	paprika	Salmonella spp.
2004	Powdered red pepper	Salmonella darby
2007	Veggie booty ¹ (seasoning)	Salmonella wadsworth Salmonella typhimurium
2010	Red and Black pepper	Salmonella montevedio

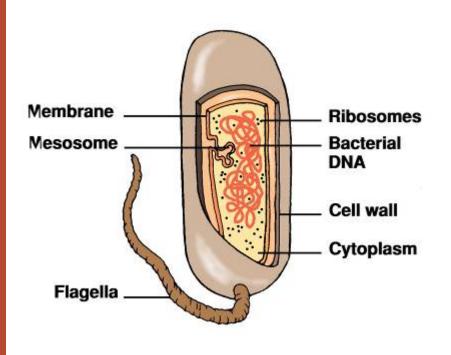
Food Borne Disease?

FDA's Draft Risk Profile

Spices have been associated with very few foodborne disease outbreaks and recalls

- a. 3 outbreaks associated with spices between 1973 and 2010
- b. CDC reported 13,405 outbreaks between 1998 and 2008
- c. Spices would account for only 0.02% of the outbreaks

FDA's Draft Risk Profile


The majority of the data represents spices before any mitigation treatments have been applied

- a. FDA sampled at the port of entry, or shortly thereafter
- Most spices are subjected to microbial reduction treatments, or used in multicomponent foods which undergo treatment
- c. FDA sampled 2844 individual lots of spices, 187 of which were positive

Bacteria

 Largest group of microorganisms

 Most important group from a food microbiology perspective

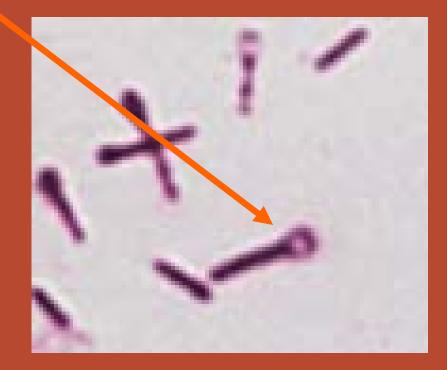
Iowa State University

Bacteria

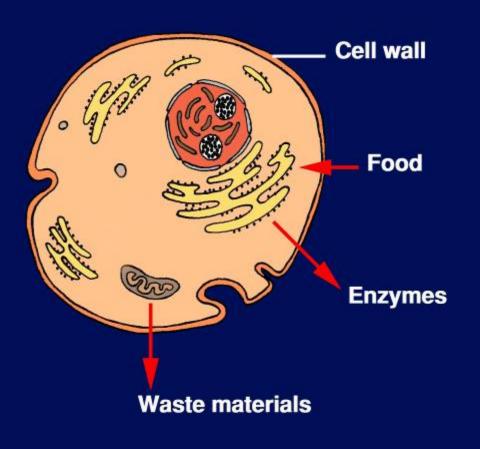
Single cells

Average size

 25,000 side by side = 1 inch
 1 cubic inch contains about 9 trillion cells


Endospores

 Vegetative cells cells that are engaged in growth, metabolism and reproduction

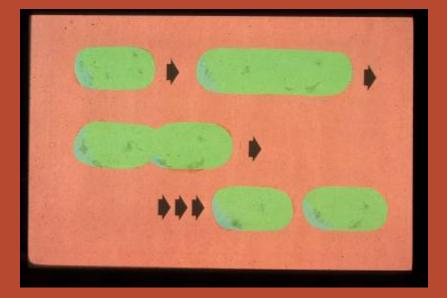

 Endospores a resistant resting body formed in response to environmental stress

Endospores

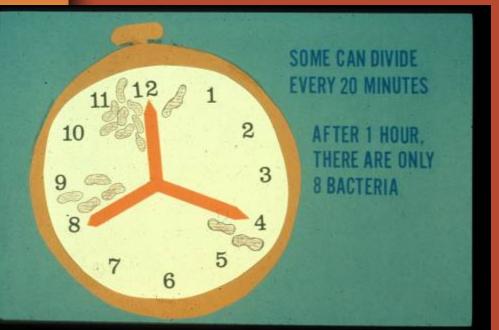
- Formed by only a few bacterial general
- (*Bacillus* and *Clostridium*)
- spores are very resistant to environmental stress
 - Heat
 - Radiation
 - drying

Bacterial Anatomy

 Self contained, single cell


 Absorbs nutrients from the environment (food)

Excretes waste
 products into the
 environment (food)


Iowa State University

Bacterial Reproduction

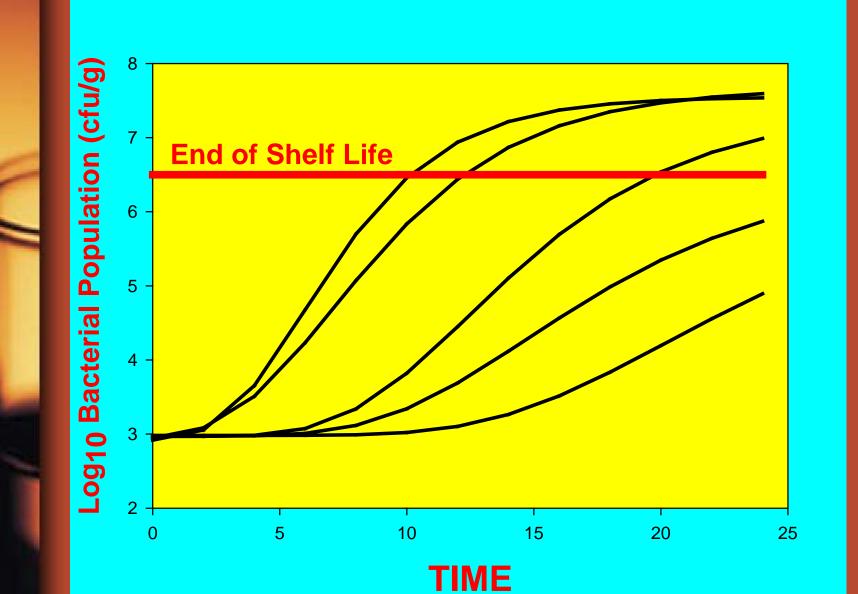
- Bacteria reproduce by binary fission
- Cell elongates, genetic material duplicates, divides into two cells

Growth

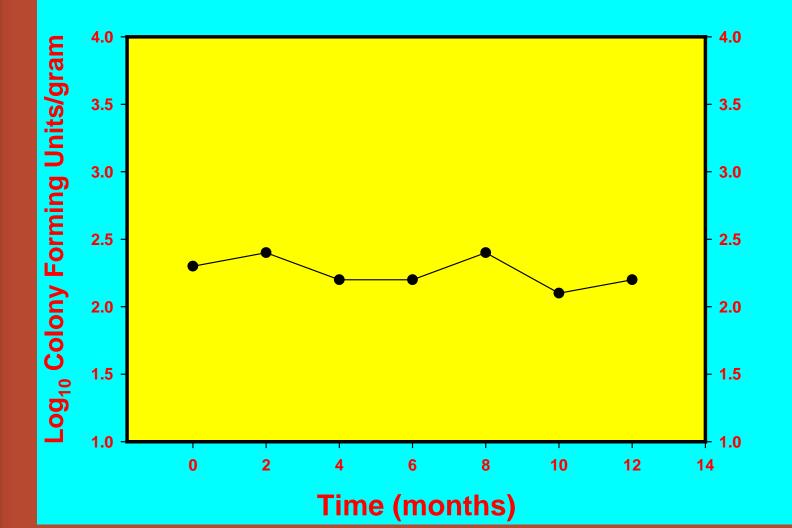
- Some bacteria, under the right conditions, can divide every 20 minutes
- Bacterial numbers increase by doubling 1cell = time 0
 2 cells = 20 min
 4 cells = 40 min
 8 cells = 60 min

Iowa State University

Bacterial Growth


- Bacterial numbers increase by doubling
- At this rate, 1 cell can become 16 million cells after 8 hours under the right conditions

Bacterial Growth


1 - 2 - 4 - 8 - 16 - 32 - 64 - 128 - 256 - 512 - 1024 - 2048 - 4096 - 8192 - 16,384 - 32,768 - 65,536 - 131,072 - 262,144 - 524,288 - 1,048,576 - 2,097,152 - 4,194,304 - 8,388,608 - 16,777,216

Iowa State University

Impact of Microbial Growth on Shelf Life

Bacterial Survival in Spices (low moisture)

Upcoming Webinars

- Webinar II
 - Microbiology of Spices, Part 2
- Webinar III
 - Interventions to control microorganisms in spices
- Webinar IV
 - Sampling and analysis