Cinnamic Aldehyde in Cassia Oil

Purpose: To determine the amount of cinnamic aldehyde in steam volatile oil from cassia or cinnamon by indirect titration.

A. Apparatus:

1. Erlenmeyer flask, 500 mL with ground glass stopper.
2. Beaker, tall, 500 mL .
3. pH meter.
4. Buret, 50 mL (graduated 0.1 mL).
5. Magnetic stirrer and teflon covered stirring bar.
6. Graduated cylinder, 250 mL .
7. Pipette $50 \mathrm{~mL}, \mathrm{TD}$.

B. Reagents:

1. Sulfuric acid, standard solution, 1.00 N .
2. Sodium hydroxide, standard solution, 1.00 N .
3. Sodium sulfite, 1.0 M solution adjusted to pH 9.6.
4. Sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ - Anhydrous, ACS grade.

C. Preparation of Sample:

1. The steam volatile oil obtained by method 16.0 or alternatively, Methods 5.0, 5.1 or 5.2, contains xylene and some moisture (Note 1). Dry the oil by adding anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and allow this mixture to stand for one hour. Pipette a 2.00 mL sample into the flask and weigh. Calculate the weight (See E. Calculations).

D. Procedure:

1. Weigh accurately ca. 1 g of cassia oil into a 500 mL Erlenmeyer flask.

Cinnamic Aldehyde in Cassia Oil

2. Add 250 mL of 1.0 M sodium sulfite solution, from a graduated cylinder.
3. Pipette 50.00 mL of the standard sulfuric acid solution into the flask with continuous agitation. Stopper the flask and shake vigorously for 5 minutes.
4. Quantitatively transfer the contents of the flask to a 500 mL beaker.
5. Insert the electrodes from a pH meter and titrate to pH 9.6 with a standardized sodium hydroxide solution. Stir the solution continuously during the titration, using a magnetic stirrer.

E. Calculations:

Wt. of the oil $=\mathrm{wt}$. of sample -wt . of xylene
Wt. of xylene $=\mathrm{mL}$ xylene $\mathrm{X} \frac{0.860 \mathrm{~g} \text { xylene }}{\frac{\mathrm{mL} \text { xylene }}{2.00 \mathrm{~mL} \text { sample }}} \times \frac{(\mathrm{mL} \text { oil }+\mathrm{mL} \text { xylene) (Note 2) }}{}$
Cinnamic aldehyde, $\%=\frac{(\mathrm{A}-\mathrm{B}) \times \mathrm{N} \times 0.1322}{2 \times \text { weight of oil(g) }} \times 100$
Where $A=m L$ of standard base required to neutralize 50 mL of the standardized acid solution.
$B=m L$ of standard base required for the sample.
$\mathrm{N}=$ norality of the sodium hydroxide solution.

F. Statistics:

TBD

G. Notes:

1. The xylene volume left in trap is determined by running blanks. See Method 16.0.
2. Total volume obtained in volatile oil determination.

H. Reference:

N/A

