

ThermoFisher SCIENTIFIC

Food Integrity with New Analytical Technologies: unlocking the truth

Amanda Manolis BS, MBA Global Market Development Manager April 15, 2018 **Mission:** We enable our customers to make the world healthier, cleaner and safer.

\$20B in revenues

50 countries >\$900M R&D investment

>65,000 employees **Our Customer Focus:** We help accelerate innovation and enhance productivity for our customers.

Thermo Fisher

invitrogen

F fisher scientific

Fulfilling our mission

Enabling our customers to make the world healthier, cleaner and safer

Current Topic

FOOD FRAUD DATABASE

Foods prone to fraud

- Olive oil, milk, honey, saffron (pictur) and apple and orange juices most c reported to have been fraudulently a
- May be diluted with cheaper or pote substitute
- Or cheap alternative deliberately mis luxury ingredient

(*study didn't examine processed food: breakfast cereals and ready meals)

Source: Global study in Journal of Science

Horsemeat scandal: How often does food fraud happen?

By Tom de Castella and Brian Wheeler BBC News Magazine

305 < Share 🧾 💟 🗠 🖨

Food Integrity: where fingerprints are strong

Mislabeling

Mislabelling of fish, meat, fruit and vegetable products is common:

- Wild \leftrightarrow farmed
- Origin and feeding diet
- Organic versus inorganic

Adulteration/Food Fraud

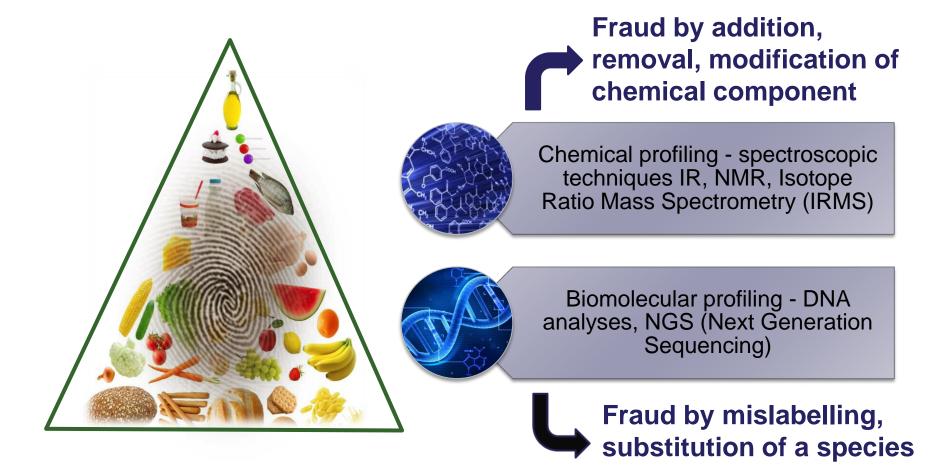
We need to confirm whether a species is present in sample (*e.g. allergies , religious taboos, lower cost substance*)

- Meat
- Halal Foods
- Plants, Spices
- GMO

Authenticity, Origin

We need to confirm the place of origin of a product, label declaration.

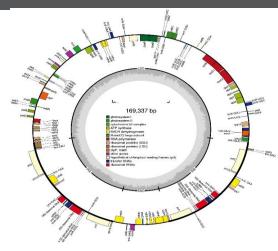
- Dairy
- Cheeses
- Plants, Spices

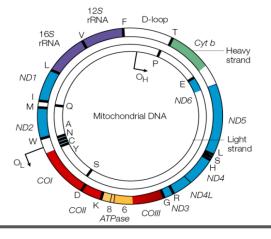

Choosing the right analytical strategy to reduce the food fraud risk

Food Integrity: where fingerprints are strong

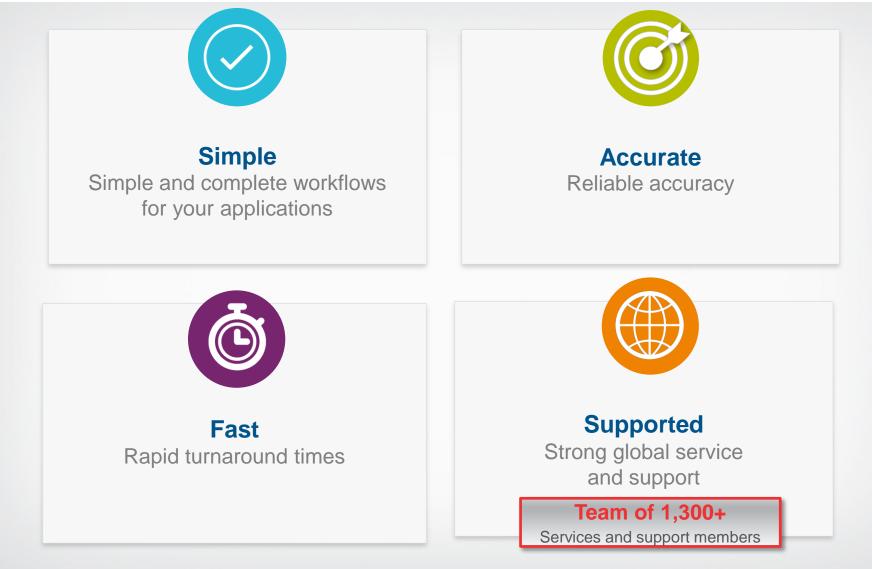
• Food and beverage products have a fingerprint, a unique signature that allows the product to be identified.

DNA Fingerprints for Multi Species ID and Authenticity


- To visualize this fingerprint, Next Generation Sequencing(NGS) can be used, identifying the DNA fingerprint of the product(s)
- The Genome Is The Fingerprint



Food Traceability by Ion Torrent[™] sequencing


- Ion Torrent[™] next generation sequencing can provide
 - Accurate species ID by sequencing of *cytochrome* subunits and other genes ("barcodes") even in mixed samples
 - Sequencing results show the percentage composition of different species in a sample
- Next generation sequencing can also associate geographic origins of the food
 - Determination of SNP frequencies by GBS of high diversity genes
- NGS can identify the presence of pathogens in a sample
 - 16S gene sequencing for identification of bacterial organisms
 - 18S/ITS gene sequencing for identification of fungal organisms
 - Metagenomics
 - Whole genome sequencing

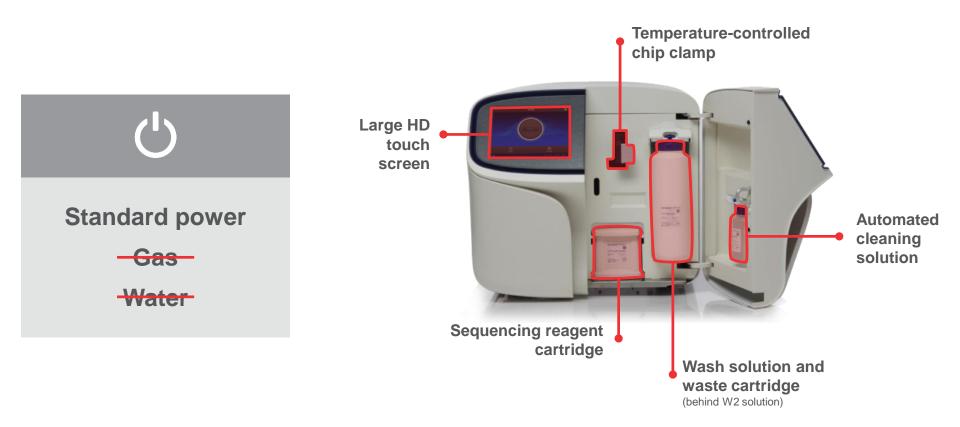
Thermo Scientific solutions for Food Industry

Thermo Scientific[™] NGS solutions for Food Integrity:

Thermo Scientific[™] NGS solutions for Food Integrity:

•The new **Thermo Scientific™ Multi Species ID System** is a complete, automated, next generation sequencing workflow and software database for multi-species ID to ensure confidence and consumer trust.

The NGS Food Integrity System includes:



Automated library construction		Automated template preparation		Sequencing	
Pipet sample and primer pools into Ion Chef System for library prep	Load cartridge into Ion Chef System	Pipet library into Ion Chef System for templating and chip loading	Load cartridge into Ion Chef System		Transfer chip to Ion GeneStudio S5 System for sequencing
	Ō	• 15 min hands-on time	(1)	15 min hands-on time	15 min hands-on time

Plug-and-Play Reagents on Ion GeneStudio S5 Series Systems

Complete workflow from design to interpretation and confirmation

Torrent Suite Software

Perform basecalling and alignment for single samples

Torrent Suite Software

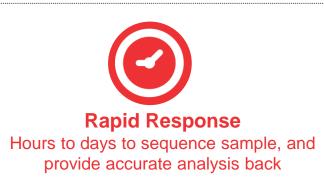
Identify and annotate your variants of interest with public or private databases, and perform multi-sample comparisons

SGS ALL SpeciesID software

Private databases, and perform multi-sample comparisons on almost any kind of sample

What is in my Curry powder seasoning?

Real-Time Response Case Study: Laurel raw material


SITUATION

 Retailer asked for NGS spices in Curry mixture (containing more than 10 spices according to label)

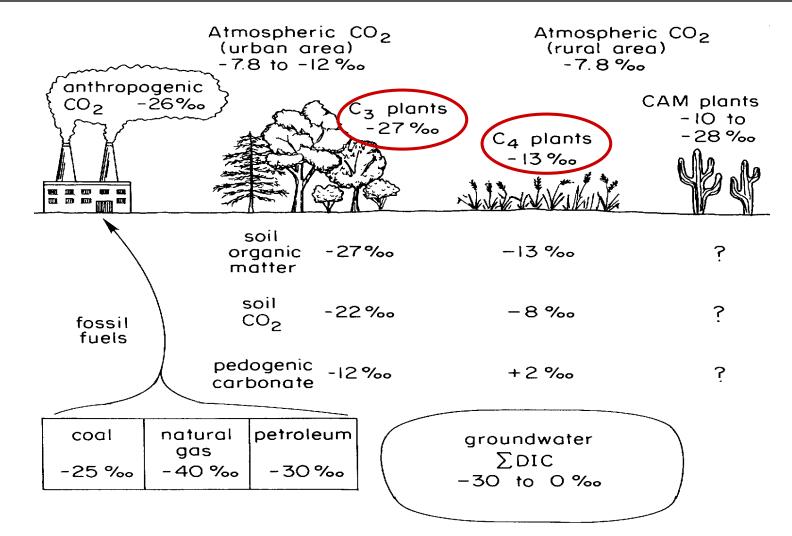
- All the spices except laurel (scientifica name Laurus nobilis) could be detected
- NGS spices was performed and the majority of the sample (> 90%) was composed by a very similar plant of the laurel family but not Laurus nobilis (laurel) potentially a toxic plant
- The supplier was mixing in the curry preparation not Laurel but something else similar to Laurel but with less than 10% of true laurel

VALUE DELIVERED

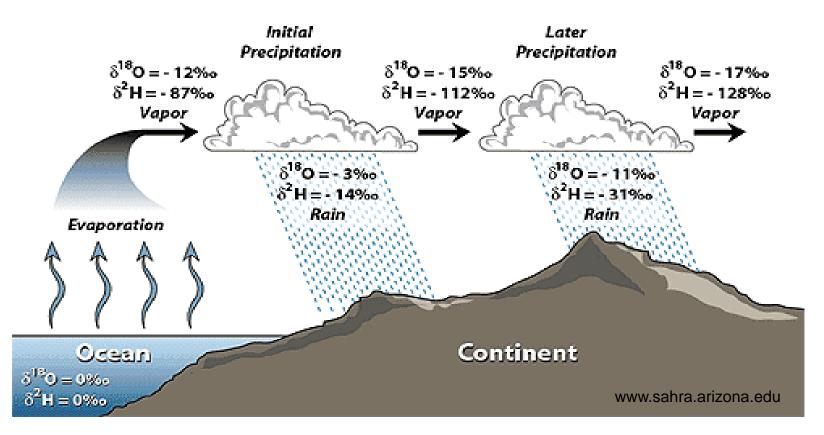
Customer Solution Specific for *Plant Species ID* testing in food

Increased profitability

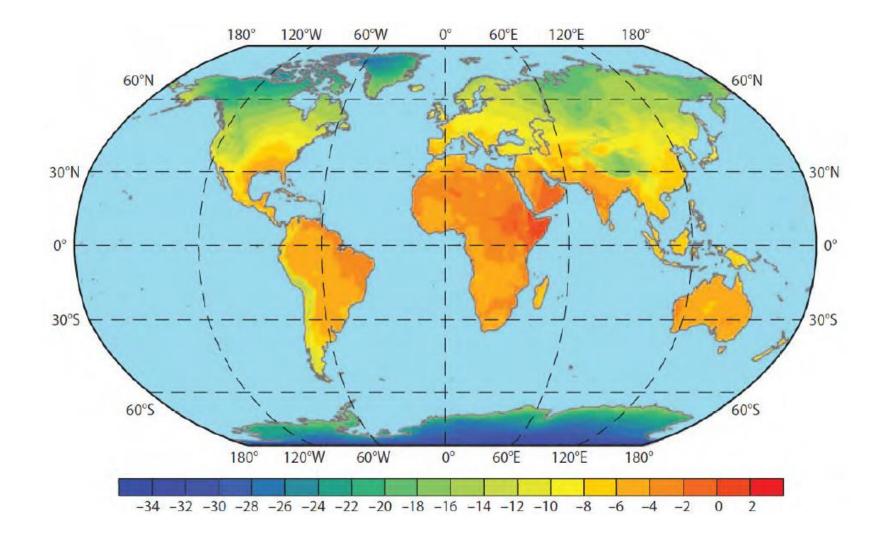
Fast and accurate analysis for prevention of intentional adulteration of food supply


Isotope Fingerprints for Origin and Authenticity

- To visualize this fingerprint, Isotope Ratio Mass Spectrometry (IRMS) can be used, identifying the isotope fingerprint of the product.
- The isotope fingerprint is region or process specific, which means that products can be differentiated based on geographical region (cheese, coffee, sugar, fish and animal feeding areas), botanical processes (beans, seeds, olive oil, vanilla), soil an fertilization processes (fruits and vegetables) and fraudulent practices (sugar addition to honey, watering of wines and spirits).



What can δ^{13} C tell us?


- δ^{13} C values differ due to photosynthesis
 - This can differentiate products derived from C3 and C4 plants

What can δ^2 H and δ^{18} O tell us?

 Hydrogen and oxygen isotopes change in the water cycle through evaporation, transpiration, sublimation, condensation and precipitation processes, giving rise to unique local – regional signatures, which transfer to biological material during their growth period

What can δ^2 H and δ^{18} O tell us?

EA IsoLink IRMS System

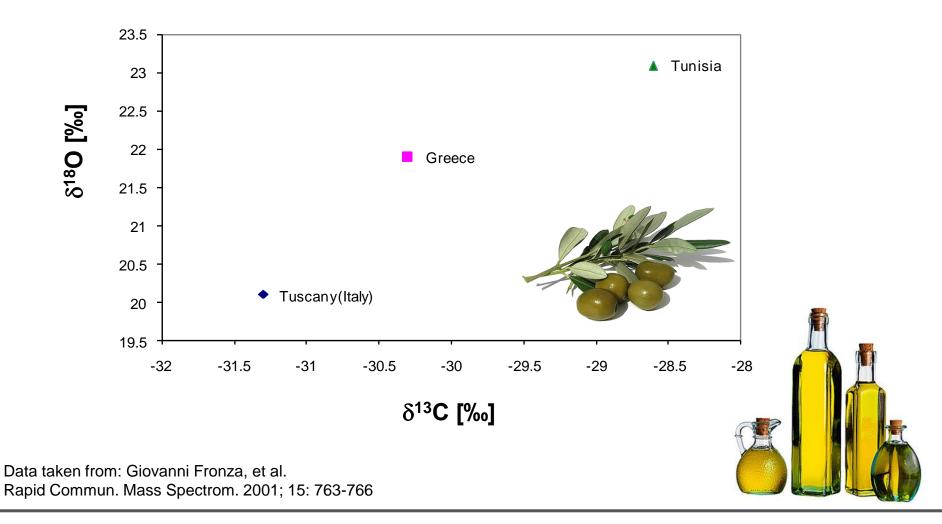
 The new Thermo Scientific[™] EA IsoLink[™] IRMS System is an all-in-one fully automated, modular EA–IRMS solution for all CNSOH applications.

A modular EA-IRMS System fully software supported for CNSOH analyses

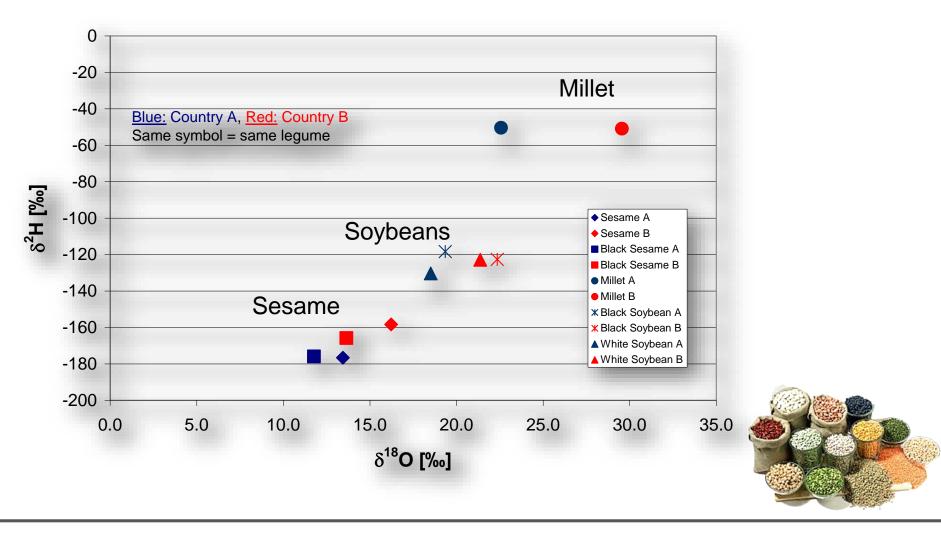
The EA IsoLink IRMS System includes:

Thermo Scientific[™] Flash IRMS[™] Elemental Analyzer

Thermo Scientific[™] ConFlo IV[™] Universal Interface


Thermo Scientific™ Isotope Ratio Mass Spectrometer

EA-IRMS: δ^{13} C and δ^{18} O in Olive Oil

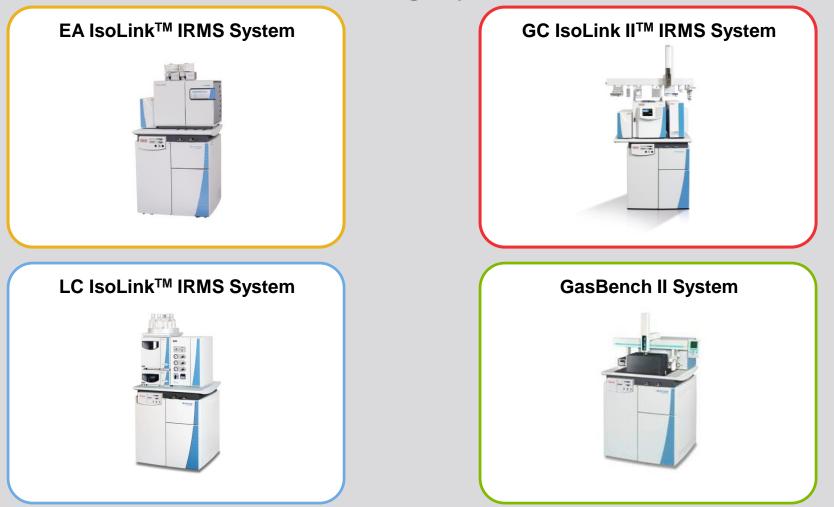

Where does your olive oil come from?

Thermo Fisher SCIENTIFIC

EA-IRMS: Origin of seeds, millet and soybean

Agricultural products from Korea (Blue) and China (Red)

Thermo Fisher


Isotope fingerprints in food and beverage products

	What is the biogeochemical interpretation	What is an example of food fraud interpretation?	What products can be affected?
Carbon	Botanical origin (C3, C4 and CAM photosynthesis)	Adulteration (e.g. sweetening with cheap sugar)	Honey, liquor, wine, olive oil, butter, flavors
Nitrogen	Soil processes, plant fertilizer processes	Mislabeling (Differentiate organic and non-organic)	Fruits and vegetables, animal meat
			X
Sulfur	Local soil conditions, proximity to shoreline	Origin of product; Fertilization	Fruits and vegetables, animal meat, honey
	and and and		E.
Oxygen	Principally related to local- regional rainfall and hence geographical area	Watering of beverages, place of origin of product	Coffee, wine, liquor, water, sugar, animal meat, flavors
	1000 C	K	
Hydrogen	Related to local-regional rainfall and hence geographical area	Watering of beverages, origin of product	Coffee, wine, liquor, water, sugar, animal meat, flavors
	the set of the		

Thermo Fisher SCIENTIFIC

Thermo Scientific solutions for Food Industry

Thermo Scientific[™] Isotope Ratio solutions for Food Integrity:

Official methods using Isotope Fingerprints

Product	Official method	Isotope fingerprint	Sample	What does it address?	Analytical solution			
Wine								
	OIV-MA- AS2-12	ô ¹⁸ O	Water	Adulteration, Geographical origin, Year of vintage	Thermo Scientific [™] GasBench II System, Thermo Scientific [™] Dual Inlet			
	OIV-MA- AS312-06	ô ¹³ C	Ethanol, Wine must, Grape sugar	Adulteration, origin	Thermo Scientific™ EA IsoLink™ IRMS System, Thermo Scientific™ GC IsoLink II™ Interface for GC-IRMS			
	OIV-AS312-07	ð¹³C	Glycerol in wines	Adulteration by addition of glycerol from C4 maize or Fossil sources	GC IsoLink II Interface for GC-IRMS, Thermo Scientific™ LC IsoLink [™] Interface for IRM-LC/MS			
	OIV-OENO 510-2013	<mark>ð</mark> ¹³C	Acetic acid in wine, vinegar		GC IsoLink II Interface for GC-IRMS, EA IsoLink IRMS System			
	OIV-OENO 510-2013	ô ¹⁸ O	Water in wine, vinegar	Adulteration, Geographical Origin, Year of Vintage	Thermo Scientific [™] GasBench II System, Dual Inlet			
Sparkling wine								
	OIV-MA- AS314-03	õ ¹³ C	CO ₂ in sparkling wine	Origin and authenticity of sparkling wine	GasBench II System, EA IsoLink IRMS System, GC IsoLink, Dual Inlet			
Spirits								
tas 1	OIV-AS312-07	δ¹³C	Glycerol in spirits	Adulteration by addition of glycerol from C4 maize or Fossil sources	GC IsoLink II Interface for GC-IRMS, LC IsoLink Interface for IRM-LC/MS			
Fruit Juice								
	EU – CEN 1995	<mark>ð</mark> ¹³C	Sugars	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface			
	USA – AOAC 1981	ð¹³C	Sugars	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface			
	EU – CEN 1998	ô ¹³ C	Sugars and pulp	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface			
ALL AL	EU – CEN 1995	δ²H and δ¹8O	Water	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface			
and the second	AOAC method 2004.01	ô¹³C	Ethanol (From Fermentation)	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface			
Fruit Juice (Concentrate)								
	AOAC 1992	ô ¹⁸ O	Water	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, EA IsoLink IRMS System			
Honey			O debeterer i					
	AOAC method 991.41	ð¹³C	C-4 plant sugars at concentration >7%	Adulteration of honey	EA IsoLink IRMS System			
	AOAC method 998.12	<mark>ð</mark> ¹³C	C-4 plant sugars at concentration >7%	Adulteration of honey	EA IsoLink IRMS System			
Cheese								
	EU Reg 548/2011	ô ¹³ C	PDO	PDO Grana Padano	EA IsoLink IRMS System			

A Mission We are Proud Of

We enable our customers to make the world healthier, cleaner and safer.

Investigate more....

thermoscientific

thermofisher.com/foodintegrity

TRUST your foods are all they should be.

Food adulteration and authenticity testing brochure

© 2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

5375

1